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SUMMARY

We describe a multigrid multiblock method for compressible turbulent flow simulations and present
results obtained from calculations on a two-element airfoil. A vertex-based spatial discretization
method and explicit multistage Runge-Kutta time-stepping are used. The slow convergence of a
single grid method makes the multigrid method, which yields a speed up with a factor of about
20, indispensable. The numerical predictions are in good agreement with experimental results. It
is shown that the convergence of the multigrid process depends considerably on the ordering of the
various loops. If the block loop is put inside the stage loop the process converges more rapidly than
if the block loop is situated outside the stage loop in case a three-stage Runge-Kutta method is used.
If a five-stage scheme is used the process does not converge in the latter block ordering. Finally, the
process based on the five-stage method is about 60% more efficient than with the three-stage method,
if the block loop is inside the stage loop.

INTRODUCTION

Numerical simulations of turbulent flow in aerodynamic applications are frequently based on the
Reynolds-averaged Navier-Stokes equations. One of the relevant problems in aeronautics is the pre-
diction of flow quantities in complicated geometries, such as the multi-element airfoil (see figure 1).
The simulation of turbulent flow around such a multi-element airfoil configuration was one of the
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Figure 1: Geometry of a two-element airfoil.

applications selected for the compressible flow solver which was developed by our group and NLR
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as a part of the Dutch ISNaS project [1]. For this application the use of a single-block, boundary-
conforming, structured grid is impossible and one may select either an unstructured grid approach
or a block-structured grid approach. Although the former technique has been successfully applied by
others [2], we selected the block-structured approach in view of the transparent data structure in the
coding, ease of implementation of the turbulence model and a high flexibility with respect to the use
of different physical models in different parts of the computational domain.

In a previous paper [3] it has been shown that for laminar and turbulent flow around a single airfoil
the introduction of the multiblock structure has no influence on the results, with respect to both the
steady-state solution and the convergence rate. Furthermore, invoking the Fuler equations instead
of the Navier-Stokes equations in blocks outside the boundary layer appeared to have no significant
influence on the results. In this paper we describe the application of the multiblock concept to
the multi-element airfoil. If the Euler equations are used throughout the computational domain,
a converged steady-state solution is obtained within a reasonable calculation time. However, if the
Reynolds-averaged Navier-Stokes equations are solved in the boundary layers, the rate of convergence
is unacceptably low. Therefore, a multigrid technique was implemented in order to accelerate the
convergence. The resulting gain in calculation time is close to a factor of 20, and the converged
solution is in good agreement with wind-tunnel measurements.

In section 2 the numerical technique, which is based on a combination of a finite volume method
with central spatial differencing and a Runge-Kutta explicit time-stepping method, is described. The
results, both for inviscid and for viscous simulations, are presented in section 3. Finally, in section 4
some conclusions are summarized.

NUMERICAL METHOD

In this section we describe the numerical method used in the flow solver. The two-dimensional,
compressible Navier-Stokes equations can be written in integral form as
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where U represents the vector of dependent variables,
U= [p,p’u,pU,E]T, (2)

with p the density, v and v the Cartesian velocity components, and E the total cnergy density.
Further, 2 is an arbitrary part of the two-dimensional space with boundary 9 and F and G are
the Cartesian components of the total flux vector. This flux vector consists of two parts: the non-
dissipative or ’convective’ part and the dissipative or *viscous’ part, which describes the effects of vis-
cosity and heat conduction, and involves first order spatial derivatives. The Navier-Stokes equations
(1) are averaged over a sufficiently large time interval. Due to the nonlinear terms in the convective
fluxes, the resulting 'Reynolds-averaged Navier-Stokes’ equations involve averages of products of two
velocity components. These terms are modeled by a suitable turbulence model. In the present paper
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the algebraic Baldwin-Lomax turbulence model, in which the unknown terms are modeled by eddy
viscosity terms, is adopted [4].

The discretization of the Navier-Stokes equations follows the method of lines, i.e. the spatial
discretization is performed first, and subsequently the resulting set of ordinary differential equations
is integrated in time, until the steady state solution is approximated. First the computational domain
is divided into blocks and each block is partitioned in quadrilateral cells with the help of a structured,
boundary-conforming grid. The variables are stored in the grid points. A finite volume method is used
in which the integral form of the Navier-Stokes equations is applied to a control volume §, bounded
by the dashed lines in figure 2. The convective flux through a boundary of this control volume is

Figure 2: Control volume in the vertex-based method.

approximated using the value of the convective flux vector in the midpoint of the boundary. The
latter is calculated by averaging over the two neighboring grid points. The viscous flux vector involves
spatial derivatives of the state vector U and is approximated in the corner points of the control volume
with the use of Gauss’ theorem on a grid cell. The viscous flux is subsequently calculated using the
trapezoidal rule. This method is called the vertex-based method.

The method of central differencing leads to a decoupling of odd and even grid points and to
oscillations near shock waves. Even in viscous flow calculations the presence of the viscous dissipation
is insufficient to damp these instabilities outside shear layers. Therefore, nonlinear artificial dissipation
is added to the basic numerical scheme. This artificial dissipation consists of two contributions: fourth
order difference terms which prevent odd-even decoupling, and second order difference terms to resolve
shock waves. The second order terms are controlled by a shock sensor, which detects discontinuities
in the pressure. In the present flow solver the artificial dissipation in the boundary layers, where
the viscous dissipation should be dominant, may be reduced by multiplication with the ratio of the
local and free-stream Mach number. The role of the artificial dissipation in relation to the viscous
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dissipation is discussed in more detail in reference [5].

At the solid wall boundaries the no-slip condition is used. The density and energy density in the
grid points on a solid wall are calculated by solving the corresponding discrete conservation laws,
using the two adjacent cells within the computational domain and their mirror images inside the wall
asthe control volume. The values of the density and energy density in the grid points inside the walls
are adjusted such that the adiabatic wall condition is approximated. The boundary conditions at
a (subsonic) far-field boundary are based on characteristic theory. The extent of the computational
domain can be reduced without affecting the accuracy if a vortex is superimposed on the incoming
free stream outside the computational domain [6)].

Due to the topology of the two- element ¢ alrfoﬂ gcometry, Specml points in the computational grld are
unavoidable. The computational grids used contain two special points at block boundaries, where five
cells meet (see figure 4). These points can be ‘treated in an elegant way within the same numerical
scheme, if the dummy vertices outside the ’current’ block are defined appropriately. The multi-
valuedness of the variables at the special point, caused by this asymmetric treatment, is eliminated
by taking the average of the five different Values after all blocks have been treated. ThIS 1s sketched
in figure 3.

current
block

Figure 3: Control volume for a special point.

The system of ordinary differential equations, which results after spatial discretization, is integrated
in time using a time-explicit multistage Runge-Kutta method. In the present flow solver a three-stage
scheme in which the dissipative fluxes (both viscous and artificial) are calculated once per time-step,
and a five-stage scheme in which the dissipative terms are calculated only at the odd stages, are
implemented. With this treatment both calculation time is saved and the stability region of the
method is increased. Extra calculation time is saved by advancing each grid point at the maximum
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local time-step according to its own stability limit. In this way the evolution from the initial solution
to the steady state is no longer time accurate, but the steady state solution obtained is unaffected.

The above time-stepping method acts as the relaxation method and coarse grid operator in the
multigrid solver (see reference [6]). In this solver an initial solution on the finest grid is obtained with
a full multigrid method. This initial solution is corrected in the FAS-stage, where either V- or W-
cycles can be chosen. A fixed number of pre- and post-relaxations is performed before turning to the
next coarser or finer grid. The solution is transferred to a coarser grid by injection, the residuals by
full weighting and the corrections to the solution are prolonged by bilinear interpolation. In order to
increase the smoothing properties of the Runge-Kutta time-stepping technique an implicit averaging
of the residuals is applied with frozen residuals at the block boundaries. For mono-block applications
this method has given satisfactory results for both two-dimensional and three-dimensional flows [5].

In the multi-element airfoil application care has to be taken in the definition of the residual-vector
in the special points. The proposed treatment of a special point implies that the control volume is
different in each of the five blocks where such a point is found. In the required averaging the five
residual-vectors in a special point are weighed with their corresponding time-steps. Without this
weighing the multigrid process cannot converge to the single grid stationary state solution.

In this multigrid, multiblock solver with a multistage time-stepping method there are various
possibilities for intertwining the different loops. In the present study the grid loop is chosen as the
outer loop and the effect of interchanging the block and the stage loop will be studied. Several
‘competing’ requirements serve as possible guidance for selecting a specific ordering of these loops.
On the one hand an anticipated parallel processing of the different blocks is more efficient, if the
data transfer between the blocks is kept to a minimum, i.e. with the stage loop inside the block-
loop. On the other hand the good convergence of the multigrid mono-block solver may be reduced as
the dummy variables near the block boundaries are kept frozen during more stages of the time-step.
This would suggest to put the block loop inside the stage loop. In order to study this dilemma we
implemented these two loop orders in a flexible way: a single parameter determines whether the block
loop is situated inside or outside the stage loop.

RESULTS.

Description of the test-case

We will present results for a two-component airfoil geometry consisting of the NLR7301 wing
section, from which a flap has been cut out at a deflection angle of 20° and with a gap width of 2.6%
chord length [7] (see figure 1). The combination of a Mach number of 0.185 and an angle of incidence
of 6° or 13.1°, of which the latter is close to maximum lift conditions, yields subsonic flow. The
Reynolds number based on the chord length of the airfoil is 2.51 x 10°. In the viscous calculations
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the locations of the transition from laminar to turbulent flow are prescribed.

The C-type computational grids (either for inviscid or viscous flow) were constructed by J.J. Benton
from British Aerospace, and are subdivided in 37 blocks (see figure 4). The grid lines are continuous
over block boundaries. Two grids are used: one ’Euler’ grid (inviscid) consisting of 16448 cells, and
a ’Navier-Stokes’ grid (viscous), which is refined in the boundary layers and wakes and consists of

28288 cells.

Figure 4: Block structure of the computational grid.

For both angles of incidence results from wind-tunnel measurement by Van den Berg [7] are avail-
able, including velocity profiles in the boundary layers and the pressure coefficient on the profile.
Since the flow is attached apart from a small laminar separation bubble near the leading edge of
the wing, the adopted turbulence model should be adequate and yield a useful comparison between

experiment and calculation.

Inviscid Flow

In order to test the flow solver on the complicated block structure of the two-element airfoil geom-
etry, we considered the relatively simple inviscid flow case, where in all blocks the Euler equations are
solved. In this way problems related to the turbulence model are separated from possible algorithmic
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problems. The use of the Euler equations implies that the boundary conditions at the solid wall
boundaries have to be changed. For inviscid flow there is only one physical boundary condition of
zero mass flux through the wall. In the vertex based approach the density, the pressure and the
tangential velocity at the wall are approximated by linear extrapolation.

In figure 5 the multigrid convergence behavior of the solver in the 13.1° case is shown. The discrete
L,-norm of the residual of the density is plotted as a function of the number of W-cycles. A converged
solution is obtained within a much smaller calculation time when compared to the single grid approach
even though only three different grid levels are available. Both for the single grid and the multigrid
calculations machine accuracy was obtained. The specific block structure nor the treatment of the
special points leads to any specific difficulties. For this inviscid test a comparison with experimental
results is not meaningful and will not be made.
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Figure 5: Convergence behavior for inviscid flow at an angle of incidence of 13.1°.

Viscous Flow

We consider the simulations of turbulent, viscous flow and present results for the 6° case only.
Sihgle-grid calculations in which only local time-stepping is applied as a convergence acceleration
technique yield a steady-state solution which is in good agreement with the experimental results.
However, in contrast with a fully inviscid simulation, the rate of convergence is very small, and
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renders this method unacceptable for practical applications. Therefore, as a method to increase
the convergence rate further, the multigrid technique and implicit residual averaging as described in

section 2 are indispensable.

In a simulation of turbulent flow at high Reynolds number it is important that the effects related
to the physical dissipation are not outweighed by those of the numerical or artificial dissipation. This
requirement could give rise to difficulties in the present multigrid method, since the time-stepping
method used requires a certain minimum amount of dissipation for sufficient smoothing of the large
wave-number components of the error (see reference [5]). If the artificial dissipation in the boundary
layer is reduced by scaling with the ratio of the local and free-stream Mach number, i.e. decreasing
the smoothing properties of the time-stepping method, a converged solution (engineering accuracy)
could be obtained by increasing the number of pre- and post-relaxations. The convergence behavior of
this calculation during the FAS stage is shown in figure 6, where the discrete L;-norm of the residual
of the density is plotted as a function of the number of W-cycles. In the blocks outside the boundary
layers and wakes the Euler equations are solved instead of the Navier-Stokes equations. The good

102

s e
[en] <o
=) —

Residual density
o

10-2

Liitl

Lahonm

050 100 150 200 250 300
# W-cycles

Figure 6: Viscous flow at an angle of incidence of 6.0°: convergence behavior

agreement with the wind-tunnel measurements can be inferred from figure 7, where the experimental
and numerically predicted pressure coefficients on the airfoil and flap are shown.

This solution was obtained with the block loop inside the stage loop of the five-stage Runge-Kutta
time-stepping method. Hence, the variables at the dummy vertices outside a block are updated
after every stage, which implies that the effects of the multiblock structure on the convergence are
kept to a minimum. The frequency of data transfer between the blocks makes this method less
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Figure 7: Viscous flow at an angle of incidence of 6.0°: comparison of the pressure coefficient on the
airfoil between calculation (solid) and experiment (dashed).

efficient for parallel processing. However, with the block loop outside the stage loop, i.e. with an
update of the dummy variables only after five flux evaluations, a converged solution could not be
obtained. Apparently, the interval between two moments of data transfer between the blocks has to
be sufficiently small in order to obtain a convergent multigrid method.

Further evidence for this statement is obtained from calculations with a three-stage instead of a
five-stage Runge-Kutta time-stepping method. If the block loop is outside the stage loop, the dummy
variables are updated after three flux evaluations. Although the rate of convergence is lower than
in the case with the loops interchanged (see figure 8), the solution has converged within engineering
accuracy after &~ 200 W-cycles. A comparison of the three-stage and five-stage schemes with the
block loop inside the stage loop shows that the five-stage scheme is more efficient: about 60 W-cycles
suffice to get the residuals at the same level as with the three-stage scheme after 200 W-cycles. The
five-stage scheme leads to a reduction in calculation time of approximately 60% in this instance.

DISCUSSION

We presented simulation results obtained with a multigrid multiblock method for a two-element
airfoil. Both viscous and inviscid calculations were performed using the same multigrid process
and the same vertex-based spatial discretization method. Moreover, either a three- or a five-stage
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Figure 8: Convergence behavior of the three-stage Runge-Kutta scheme for turbulent flow; comparison
between block loop inside (solid) and outside (dashed) stage loop.

Runge-Kutta scheme was considered for the integration in time and the smoothing properties of this
relaxation method were further enhanced through the introduction of local time-stepping, implicit
residual averaging in which the residuals at the block boundaries were kept fixed to their non-smoothed
values.

The inviscid calculations have shown that a solution which is converged up to machine accuracy can
be obtained with this multigrid method. A comparison with the single grid simulation method shows
that a considerable reduction in calculation time was obtained with the multigrid method, although
the convergence of the single grid method for inviscid calculations was already quite acceptable. We
also investigated two different numerical boundary conditions at the solid walls. It appeared that
linear extrapolation of the pressure not only leads to a better convergence than constant extrapolation,
but also gives risc to a much smaller entropy layer around the airfoil. The resulting drag coefficient,
which theoretically should equal zero in this subsonic flow, is reduced by almost 60%.

In the viscous calculations the single grid method was found to yield a well converged result in the
6°-case, however, the convergence towards the steady state solution was extremely slow and makes
the use of a multigrid approach essential. A comparison of the calculation times required in both
methods shows that a total speed-up with a factor of about 20 can be reached. The numerical
predictions obtained for the lift- and pressure coefficients compare well with experimental results
and give confidence in the use of the Baldwin-Lomax model for this application. The convergence
of the multigrid process was studied in detail, showing that the ordering of the various loops in the
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process has a considerable effect. Interchanging the block and stage loops and keeping the grid loop as
the outer loop, yields an optimal convergence when the block loop is put inside the stage loop. If the
stage loop is put inside the block loop then convergence of the multigrid process was absent when
using the five-stage Runge-Kutta method as the relaxation method. Apparently, the smoothing of
the relaxation method becomes less effective as the number of stages between two 'updates’ of the
dummy-variables increases. This result has some less favorable consequences in view of a possible
parallel processing of the multigrid method. On the one hand parallel processing seems more efficient
if the frequency of data transfer between the blocks can be reduced. On the other hand the reduction
of this frequency results in a reduction of the convergence rate of the multigrid process, and in some
instances even to an absence of convergence. This suggests that in a possible parallel processing of
this multigrid method, an optimal rate of data-exchange between the blocks should be determined.
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